Fine particulate matter(PM2.5) pollution will affect people’s well-being and cause economic losses. It is of great value to study the impact of PM2.5 on the real estate market. While previous studies have examined the effects of PM2.5 pollution on urban housing prices, there has been little in-depth research on these effects, which are spatially heterogeneous at different conditional quantiles. To address this issue, this study employs quantile regression (QR) and geographically weighted quantile regression (GWQR) models to obtain a full account of asymmetric and spatial non-stationary effects of PM2.5 pollution on urban housing prices through 286 Chinese prefecture-level cities for 2005–2013. Considerable differences in the data distributions and spatial characteristics of PM2.5 pollution and urban housing prices are found, indicating the presence of asymmetric and spatial non-stationary effects. The quantile regression results show that the negative influences of PM2.5 pollution on urban housing prices are stronger at higher quantiles and become more pronounced with time. Furthermore, the spatial relationship between PM2.5 pollution and urban housing prices is spatial non-stationary at most quantiles for the study period. A negative correlation gradually dominates in most of the study areas. At higher quantiles, PM2.5 pollution is always negatively correlated with urban housing prices in eastern coastal areas and is stable over time. Based on these findings, we call for more targeted approaches to regional real estate development and environmental protection policies.
CITATION STYLE
Sun, B., & Yang, S. (2020). Asymmetric and spatial non-stationary effects of particulate air pollution on urban housing prices in Chinese cities. International Journal of Environmental Research and Public Health, 17(20), 1–23. https://doi.org/10.3390/ijerph17207443
Mendeley helps you to discover research relevant for your work.