Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia

6Citations
Citations of this article
39Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cancer cachexia, characterized by continuous muscle wasting, is a key determinant of cancer-related death; however, there are few medical treatments to combat it. Myostatin (MSTN)/growth differentiation factor 8 (GDF-8), which is a member of the transforming growth factor-β family, is secreted in an inactivated form noncovalently bound to the prodomain, negatively regulating the skeletal muscle mass. Therefore, inhibition of MSTN signaling is expected to serve as a therapeutic target for intractable muscle wasting diseases. Here, we evaluated the inhibitory effect of peptide-2, an inhibitory core of mouse MSTN prodomain, on MSTN signaling. Peptide-2 selectively suppressed the MSTN signal, although it had no effect on the activin signal. In contrast, peptide-2 slightly inhibited the GDF-11 signaling pathway, which is strongly related to the MSTN signaling pathway. Furthermore, we found that the i.m. injection of peptide-2 to tumor-implanted C57BL/6 mice alleviated muscle wasting in cancer cachexia. Although peptide-2 was unable to improve the loss of heart weight and fat mass when cancer cachexia model mice were injected with it, peptide-2 increased the gastrocnemius muscle weight and muscle cross-sectional area resulted in the enhanced grip strength in cancer cachexia mice. Consequently, the model mice treated with peptide-2 could survive longer than those that did not undergo this treatment. Our results suggest that peptide-2 might be a novel therapeutic candidate to suppress muscle wasting in cancer cachexia.

Cite

CITATION STYLE

APA

Ojima, C., Noguchi, Y., Miyamoto, T., Saito, Y., Orihashi, H., Yoshimatsu, Y., … Itoh, F. (2020). Peptide-2 from mouse myostatin precursor protein alleviates muscle wasting in cancer-associated cachexia. Cancer Science, 111(8), 2954–2964. https://doi.org/10.1111/cas.14520

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free