The intelligent reflecting surface (IRS) is a two-dimensional (2D) surface with a programmable structure and is composed of many arrays. The arrays are used to supervise electromagnetic wave propagation by altering the electric and magnetic properties of the 2D surface. IRS can influentially convert wireless channels to very effectively enhance spectral efficiency (SE) and communication performance in wireless systems. However, proper channel information is necessary to realize the IRS anticipated gains. The conventional technique has been taken into consideration in recent attempts to fix this issue, which is straightforward but not ideal. A deep learning model which is called the long short-term memory (Bi-LSTM) model can tackle this issue due to its good learning capability and it plays a vital role in enhancing SE. Bi-LSTM can collect data from both forward and backward directions simultaneously to provide improved prediction accuracy. Because of the tremendous benefits of the Bi-LSTM model, in this paper, an IRS-assisted Bi-LSTM model-based multi-user multiple input single output downlink system is proposed for SE improvement. A Wiener filter is used to determine the optimal phase of each IRS element. In the simulation results, the proposed system is compared with other DL models and methods for the SE performance evaluation. The model exhibits satisfactory SE performance with a different signal-to-noise ratio compared to other schemes in the online phase.
CITATION STYLE
Aziz, M. A., Rahman, M. H., Sejan, M. A. S., Baik, J. I., Kim, D. S., & Song, H. K. (2023). Spectral Efficiency Improvement Using Bi-Deep Learning Model for IRS-Assisted MU-MISO Communication System. Sensors, 23(18). https://doi.org/10.3390/s23187793
Mendeley helps you to discover research relevant for your work.