DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene-like SiC and BN structures

28Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Influence of ordered monovacancies on elastic properties of graphene is theoretically investigated by density functional theory (DFT) calculations. Inverse linear dependence of the graphene Young's modulus on the concentration of vacancies has been revealed and migration rate of the vacancies has been calculated as a function of applied strain. It is shown that the migration rate can be controlled by applying various strains or temperatures. The influence of ordered monovacancies on magnetic properties of graphene as well as graphene-like hexagonal carbon silicide (2D-SiC) and the boron nitride (h-BN) structures is investigated. It is established that the presence of vacancies in all systems yields the appearance of local magnetic moment. However, in 2D-SiC structure the magnetic moment occurs only in the case of a Si vacancy. Influence of the distance between vacancies on the ferromagnetic or anti-ferromagnetic ordering for all structures is established. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Cite

CITATION STYLE

APA

Fedorov, A. S., Popov, Z. I., Fedorov, D. A., Eliseeva, N. S., Serjantova, M. V., & Kuzubov, A. A. (2012). DFT investigation of the influence of ordered vacancies on elastic and magnetic properties of graphene and graphene-like SiC and BN structures. Physica Status Solidi (B) Basic Research, 249(12), 2549–2552. https://doi.org/10.1002/pssb.201200105

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free