Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives

6Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Recently, we developed a machine-learning algorithm “EMPaSchiz” that learns, from a training set of schizophrenia patients and healthy individuals, a model that predicts if a novel individual has schizophrenia, based on features extracted from his/her resting-state functional magnetic resonance imaging. In this study, we apply this learned model to first-degree relatives of schizophrenia patients, who were found to not have active psychosis or schizophrenia. We observe that the participants that this model classified as schizophrenia patients had significantly higher “schizotypal personality scores” than those who were not. Further, the “EMPaSchiz probability score” for schizophrenia status was significantly correlated with schizotypal personality score. This demonstrates the potential of machine-learned diagnostic models to predict state-independent vulnerability, even when symptoms do not meet the full criteria for clinical diagnosis.

Cite

CITATION STYLE

APA

Kalmady, S. V., Paul, A. K., Greiner, R., Agrawal, R., Amaresha, A. C., Shivakumar, V., … Venkatasubramanian, G. (2020). Extending schizophrenia diagnostic model to predict schizotypy in first-degree relatives. Npj Schizophrenia, 6(1). https://doi.org/10.1038/s41537-020-00119-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free