Appropriate monitoring of the depth of anaesthesia is crucial to prevent deleterious effects of insufficient anaesthesia on surgical patients. Since cardiovascular parameters and motor response testing may fail to display awareness during surgery, attempts are made to utilise alterations in brain activity as reliable markers of the anaesthetic state. Here we present a novel, promising approach for anaesthesia monitoring, basing on recurrence quantification analysis (RQA) of EEG recordings. This nonlinear time series analysis technique separates consciousness from unconsciousness during both remifentanil/ sevoflurane and remifentanil/propofol anaesthesia with an overall prediction probability of more than 85%, when applied to spontaneous one-channel EEG activity in surgical patients. © 2010 Becker et al.
CITATION STYLE
Becker, K., Schneider, G., Eder, M., Ranft, A., Kochs, E. F., Zieglgänsberger, W., & Dodt, H. U. (2010). Anaesthesia monitoring by recurrence quantification analysis of EEG data. PLoS ONE, 5(1). https://doi.org/10.1371/journal.pone.0008876
Mendeley helps you to discover research relevant for your work.