Cathelicidin LL-37 Increases Lung Epithelial Cell Stiffness, Decreases Transepithelial Permeability, and Prevents Epithelial Invasion by Pseudomonas aeruginosa

  • Byfield F
  • Kowalski M
  • Cruz K
  • et al.
53Citations
Citations of this article
79Readers
Mendeley users who have this article in their library.

Abstract

In addition to its antibacterial activity, the cathelicidin-derived LL-37 peptide induces multiple immunomodulatory effects on host cells. Atomic force microscopy, F-actin staining with phalloidin, passage of FITC-conjugated dextran through a monolayer of lung epithelial cells, and assessment of bacterial outgrowth from cells subjected to Pseudomonas aeruginosa infection were used to determine LL-37’s effect on epithelial cell mechanical properties, permeability, and bacteria uptake. A concentration-dependent increase in stiffness and F-actin content in the cortical region of A549 cells and primary human lung epithelial cells was observed after treatment with LL-37 (0.5–5 μM), sphingosine 1-phosphate (1 μM), or LPS (1 μg/ml) or infection with PAO1 bacteria. Other cationic peptides, such as RK-31, KR-20, or WLBU2, and the antibacterial cationic steroid CSA-13 did not reproduce the effect of LL-37. A549 cell pretreatment with WRW4, an antagonist of the transmembrane formyl peptide receptor-like 1 protein attenuated LL-37’s ability to increase cell stiffness. The LL-37–mediated increase in cell stiffness was accompanied by a decrease in permeability and P. aeruginosa uptake by a confluent monolayer of polarized normal human bronchial epithelial cells. These results suggested that the antibacterial effect of LL-37 involves an LL-37–dependent increase in cell stiffness that prevents epithelial invasion by bacteria.

Cite

CITATION STYLE

APA

Byfield, F. J., Kowalski, M., Cruz, K., Leszczyńska, K., Namiot, A., Savage, P. B., … Janmey, P. A. (2011). Cathelicidin LL-37 Increases Lung Epithelial Cell Stiffness, Decreases Transepithelial Permeability, and Prevents Epithelial Invasion by Pseudomonas aeruginosa. The Journal of Immunology, 187(12), 6402–6409. https://doi.org/10.4049/jimmunol.1102185

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free