Type I IFNs (IFN-α and IFN-β), immunomodulatory cytokines secreted from activated plasmacytoid dendritic cells (pDCs), contribute to the innate defense against pathogenic infections and the pathogenesis of the autoimmune disease psoriasis vulgaris. A previous study has shown that an E26 transformation-specific (Ets) family transcription factor Spi-B can transactivate the type I IFN promoter in synergy with IFN regulatory factor (IRF)-7 and is required for type I IFN production in pDCs. However, the mechanism of negative regulation of type I IFNs by pDCs remains unknown. In this study, we report that a basic leucine zipper (bZip) transcription factor v-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MafB) suppresses the induction of type I IFNs in pDCs. The elevated expression of MafB inhibited the transactivation of type I IFN genes in a dose-dependent manner. At the molecular level, MafB interacted with the Ets domain of Spi-B and interfered with IRF-7-Spi-B complexation. Decreased MafB mRNA expression and degradation of MafB protein in the early phase of immune responses led to the enhancement of type I IFNs in pDCs. In vivo studies indicated that MafB is involved in resistance against imiquimod-induced psoriasis-like skin inflammation. Overall, these findings demonstrate that MafB acts as a negative regulator of type I IFN induction in pDCs and plays an important role in maintaining immune homeostasis.
CITATION STYLE
Saiga, H., Ueno, M., Tanaka, T., Kaisho, T., & Hoshino, K. (2022). Transcription factor MafB-mediated inhibition of type I interferons in plasmacytoid dendritic cells. International Immunology, 34(3), 159–172. https://doi.org/10.1093/intimm/dxab103
Mendeley helps you to discover research relevant for your work.