Hypoxic injury provokes inflammation of many tissues including the ocular surface. In rabbit corneal epithelial cells, both peroxisome proliferator-activated receptor (PPAR)-inducible cytochrome P450 4B1 and cyclooxygenase-2 (COX-2) mRNAs were increased by hypoxia. PPAR α and β but not γ mRNAs were detected in these cells. The PPAR activator, WY-14,643 increased COX-2 expression. Similarly, non-steroidal anti-inflammatory drugs with the ability to activate PPARs induced COX-2 independently of prostaglandin synthesis inhibition. COX-2 protein overexpression by hypoxia and PPAR activation was not associated with a parallel increase in prostaglandin E2 accumulation. However, the enzyme regained full catalytic activity when: 1) hypoxic cells were re-exposed to normoxic conditions in the presence of heme and arachidonic acid, and 2) WY-14,643-treated cells were depleted of intracellular GSH. Consistent with previous observations showing that the corneal production of cytochrome P450-derived inflammatory eicosanoids is elevated by hypoxia and inflammation, the current data suggest that hypoxic injury is a model of inflammation in which molecules other than COX-derived arachidonic acid metabolites play a major proinflammatory role. This study also suggests that increased cellular GSH may be the mechanism responsible for the characteristic dissociation of PPAR-induced COX-2 expression and activity. Moreover, we provide new insights into the commonly observed lack of efficacy of classical non-steroidal anti-inflammatory drugs in the treatment of hypoxia-related ocular surface inflammation.
CITATION STYLE
Bonazzi, A., Mastyugin, V., Mieyal, P. A., Dunn, M. W., & Laniado-Schwartzman, M. (2000). Regulation of cyclooxygenase-2 by hypoxia and peroxisome proliferators in the corneal epithelium. Journal of Biological Chemistry, 275(4), 2837–2844. https://doi.org/10.1074/jbc.275.4.2837
Mendeley helps you to discover research relevant for your work.