This work explores the application of Allium sativum (Garlic) extract, in the creation of novel polymeric core-sheath fibers for wound therapy applications. The core-sheath pressurized gyration (CS PG) technology is utilized to mass-produce fibers with a polycaprolactone (PCL) core and a polyethylene oxide (PEO) sheath, loaded with garlic extract. The produced fibers maintain structural integrity, long-term stability and provide a cell-friendly surface with rapid antibacterial activity. The physical properties, morphology, therapeutic delivery, cytotoxicity, thermal and chemical stability of PCL, PEO, PEO/Garlic, Core-Sheath (CS) PEO/PCL and PEO/Garlic/PCL fibers are analyzed. Findings show that the addition of garlic extract greatly increases the fibers’ thermal durability, while decreasing their diameter, thus improving cell adhesion and proliferation. In-vitro release tests reveal a rapid release of garlic extract, which has significant antibacterial action against both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria species. Cell viability experiments validate the fiber samples' biocompatibility and nontoxicity, making them appropriate for integrative medicine applications. These core-sheath structures emphasize the potential of combining natural therapeutic agents with advanced material technologies to develop cost-effective, sustainable and highly effective wound dressings, offering a promising solution to the growing concerns associated with conventional synthetic antibacterial agents.
CITATION STYLE
Majd, H., Gultekinoglu, M., Bayram, C., Karaosmanoğlu, B., Taşkıran, E. Z., Kart, D., … Edirisinghe, M. (2024). Biomedical Efficacy of Garlic-Extract-Loaded Core-Sheath Plasters for Natural Antimicrobial Wound Care. Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.202400014
Mendeley helps you to discover research relevant for your work.