Computing maximum independent set on outerstring graphs and their relatives

3Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A graph G with n vertices is called an outerstring graph if it has an intersection representation of a set of n curves inside a disk such that one endpoint of every curve is attached to the boundary of the disk. Given an outerstring graph representation, the Maximum Independent Set (MIS) problem of the underlying graph can be solved in O(s3) time, where s is the number of segments in the representation (Keil et al., Comput. Geom., 60:19–25, 2017). If the strings are of constant size (e.g., line segments, L -shapes, etc.), then the algorithm takes O(n3) time. In this paper, we examine the fine-grained complexity of the MIS problem on some well-known outerstring representations. We show that solving the MIS problem on grounded segment and grounded square- L representations is at least as hard as solving MIS on circle graph representations. Note that no O(n2-δ) -time algorithm, δ> 0, is known for the MIS problem on circle graphs. For the grounded string representations where the strings are y-monotone simple polygonal paths of constant length with segments at integral coordinates, we solve MIS in O(n2) time and show this to be the best possible under the strong exponential time hypothesis (SETH). For the intersection graph of n L -shapes in the plane, we give a (4 · log OPT) -approximation algorithm for MIS (where OPT denotes the size of an optimal solution), improving the previously best-known (4 · log n) -approximation algorithm of Biedl and Derka (WADS 2017).

Cite

CITATION STYLE

APA

Bose, P., Carmi, P., Keil, M. J., Maheshwari, A., Mehrabi, S., Mondal, D., & Smid, M. (2019). Computing maximum independent set on outerstring graphs and their relatives. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 11646 LNCS, pp. 211–224). Springer Verlag. https://doi.org/10.1007/978-3-030-24766-9_16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free