Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant Acinetobacter baumannii

  • Yang Z
  • Yin S
  • Li G
  • et al.
30Citations
Citations of this article
75Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Previous research has reported the transcriptomic phage-host interactions in Escherichia coli and Pseudomonas aeruginosa , leading to the detailed discovery of transcriptomic regulations and predictions of specific gene functions. However, a direct relationship between A. baumannii and its phage has not been previously reported, although A. baumannii is becoming a rigorous drug-resistant threat. We analyzed transcriptomic changes after φAbp1 infected its host, extensively drug-resistant (XDR) A. baumannii AB1, and found defense-like responses of the host, step-by-step control by the invader, elaborate interactions between host and phage, and elevated drug resistance gene expressions of AB1 after phage infection. These findings suggest the detailed interactions of A. baumannii and its phage, which may provide both encouraging suggestions for drug design and advice for the clinical use of vital phage particles. Acinetobacter baumannii is a growing threat, although lytic bacteriophages have been shown to effectively kill A. baumannii . However, the interaction between the host and the phage has not been fully studied. We demonstrate the global profile of transcriptional changes in extensively drug-resistant A. baumannii AB1 and the interaction with phage φAbp1 through RNA sequencing (RNA-seq) and bioinformatic analysis. Only 15.6% (600/3,838) of the genes of the infected host were determined to be differentially expressed genes (DEGs), indicating that only a small part of the bacterial resources was needed for φAbp1 propagation. Contrary to previous similar studies, more upregulated rather than downregulated DEGs were detected. Specifically, φAbp1 infection caused the most extensive impact on host gene expression at 10 min, which was related to the intracellular accumulation phase of virus multiplication. Based on the gene coexpression network, a middle gene ( gp34 , encoding phage-associated RNA polymerase) showed a negative interaction with numerous host ribosome protein genes. In addition, the gene expression of bacterial virulence/resistance factors was proven to change significantly. This work provides new insights into the interactions of φAbp1 and its host, which contributes to the further understanding of phage therapy, and provides another reference for antibacterial agents. IMPORTANCE Previous research has reported the transcriptomic phage-host interactions in Escherichia coli and Pseudomonas aeruginosa , leading to the detailed discovery of transcriptomic regulations and predictions of specific gene functions. However, a direct relationship between A. baumannii and its phage has not been previously reported, although A. baumannii is becoming a rigorous drug-resistant threat. We analyzed transcriptomic changes after φAbp1 infected its host, extensively drug-resistant (XDR) A. baumannii AB1, and found defense-like responses of the host, step-by-step control by the invader, elaborate interactions between host and phage, and elevated drug resistance gene expressions of AB1 after phage infection. These findings suggest the detailed interactions of A. baumannii and its phage, which may provide both encouraging suggestions for drug design and advice for the clinical use of vital phage particles.

Cite

CITATION STYLE

APA

Yang, Z., Yin, S., Li, G., Wang, J., Huang, G., Jiang, B., … Zhao, X. (2019). Global Transcriptomic Analysis of the Interactions between Phage φAbp1 and Extensively Drug-Resistant Acinetobacter baumannii. MSystems, 4(2). https://doi.org/10.1128/msystems.00068-19

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free