Optimal ratio of Lamé moduli with application to motion of Jupiter storms

0Citations
Citations of this article
1Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fluid dynamics models the distribution of sources, sinks and vortices in imaged motion. A variety of different flow types can be obtained by specifying a key quantity known as the ratio of the Lamé moduli λ/μ. Special cases include the weakly elliptic flow λ/μ, → -2, often utilized in the Monge-Ampère transport, the Laplacian diffusion model λ/μ = -1, and the hyper-elliptic flow λ/μ → ∞ of the Stokesian dynamics. Bayesian Gaussian process generalization of the fluid displacement estimation indicates that in the absence of the specific knowledge about the ratio of the Lamé moduli, it is better to temporally balance between the rotational and divergent motion. At each time instant the Lamé moduli should minimize the difference between the fluid displacement increment and the negative gradient of the image mismatch measure while keeping the flow as incompressible as possible. An experiment presented in this paper with the interpolation of the photographed motion of Jupiter storms supports the result. © Springer-Verlag Berlin Heidelberg 2005.

Cite

CITATION STYLE

APA

Girdziušas, R., & Laaksonen, J. (2005). Optimal ratio of Lamé moduli with application to motion of Jupiter storms. In Lecture Notes in Computer Science (Vol. 3540, pp. 1096–1106). Springer Verlag. https://doi.org/10.1007/11499145_111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free