Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells

486Citations
Citations of this article
150Readers
Mendeley users who have this article in their library.

Abstract

The development of acquired resistance to antihormonal agents in breast cancer is a major therapeutic problem. We have developed a tamoxifen-resistant (TAM-R) MCF-7 breast cancer cell line to investigate the mechanisms behind this condition. Both epidermal growth factor receptor (EGFR) and c-erbB2 mRNA and protein expression were increased in TAM-R compared with wild-type MCF-7 cells, whereas comparable levels of c-erbB3 mRNA and protein were expressed in both cell lines. Under basal conditions, phosphorylated EGFR/c-erbB2, EGFR/c-erbB3 but not c-erbB2/c-erbB3 receptor heterodimers were detected in TAM-R cells in association with increased levels of phosphorylated extracellular-signal regulated kinase 1/2 (ERK1/2). Both cell lines were capable of generating a range of EGFR-specific ligands and increased expression of transforming growth factor α was observed in TAM-R cells. Treatment of TAM-R cells with ZD1839 (Iressa) or trastuzumab (Herceptin) blocked c-erbB receptor heterodimer formation and phosphorylation, reduced ERK1/2 activity, and strongly inhibited cell growth. The MAPK kinase inhibitor PD098059 specifically reduced phosphorylated ERK1/2 levels and inhibited TAM-R growth. All three agents abolished ERK1/2 activity in wild-type cells but caused only small reductions in cell proliferation. These results demonstrate that TAM-R MCF-7 cell growth is mediated by the autocrine release and action of an EGFR-specific ligand inducing preferential EGFR/c-erbB2 dimerization and downstream activation of the ERK pathway.

Cite

CITATION STYLE

APA

Knowlden, J. M., Hutcheson, I. R., Jones, H. E., Madden, T., Gee, J. M. W., Harper, M. E., … Nicholson, R. I. (2003). Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology, 144(3), 1032–1044. https://doi.org/10.1210/en.2002-220620

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free