Simulating the Midlatitude Atmospheric Circulation: What Might We Gain From High-Resolution Modeling of Air-Sea Interactions?

44Citations
Citations of this article
50Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Purpose of Review: To provide a snapshot of the current research on the oceanic forcing of the atmospheric circulation in midlatitudes and a concise update on previous review papers. Recent Findings: Atmospheric models used for seasonal and longer timescales predictions are starting to resolve motions so far only studied in conjunction with weather forecasts. These phenomena have horizontal scales of ~ 10–100 km which coincide with energetic scales in the ocean circulation. Evidence has been presented that, as a result of this matching of scale, oceanic forcing of the atmosphere was enhanced in models with 10–100 km grid size, especially at upper tropospheric levels. The robustness of these results and their underlying mechanisms are however unclear. Summary: Despite indications that higher resolution atmospheric models respond more strongly to sea surface temperature anomalies, their responses are still generally weaker than those estimated empirically from observations. Coarse atmospheric models (grid size greater than 100 km) will miss important signals arising from future changes in ocean circulation unless new parameterizations are developed.

Cite

CITATION STYLE

APA

Czaja, A., Frankignoul, C., Minobe, S., & Vannière, B. (2019, December 1). Simulating the Midlatitude Atmospheric Circulation: What Might We Gain From High-Resolution Modeling of Air-Sea Interactions? Current Climate Change Reports. Springer. https://doi.org/10.1007/s40641-019-00148-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free