Linear Temporal Logic (LTL) is the standard specification language for reactive systems and is successfully applied in industrial settings. However, many shortcomings of LTL have been identified in the literature, among them the limited expressiveness, the lack of quantitative features, and the inability to express robustness. There is work on overcoming these shortcomings, but each of these is typically addressed in isolation. This is insufficient for applications where all shortcomings manifest themselves simultaneously. Here, we tackle this issue by introducing logics that address more than one shortcoming. To this end, we combine the logics Linear Dynamic Logic, Prompt-LTL, and robust LTL, each addressing one aspect, to new logics. For all combinations of two aspects, the resulting logic has the same desirable algorithmic properties as plain LTL. In particular, the highly efficient algorithmic backends that have been developed for LTL are also applicable to these new logics. Finally, we discuss how to address all three aspects simultaneously.
CITATION STYLE
Neider, D., Weinert, A., & Zimmermann, M. (2019). Robust, expressive, and quantitative linear temporal logics: Pick any two for free. In Electronic Proceedings in Theoretical Computer Science, EPTCS (Vol. 305, pp. 1–16). Open Publishing Association. https://doi.org/10.4204/EPTCS.305.1
Mendeley helps you to discover research relevant for your work.