Advances in wound dressing based on electrospinning nanofibers

62Citations
Citations of this article
148Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In recent years, there has been a significant focus on bioactive dressings suitable for treating chronic and acute wounds. Electrospinning nanofibers are considered advanced dressing options due to their high porosity and permeability to air and water, effective barrier properties against external pathogens, and excellent resemblance to the extracellular matrix for wound healing and skin regeneration. This article reviews the recent advancements in the application of electrospinning nanofibers for bioactive wound healing. The review begins with an overview of the wound healing process and electrospinning methods. It then explores the advantages and disadvantages of different synthetic and natural polymers used in the preparation of electrospinning wound dressings. The natural polymers discussed in this review include collagen, gelatin, silk fibroin, chitosan, hyaluronic acid, and sodium alginate. Additionally, the review delves into commonly used synthetic polymers like polyvinyl alcohol, polyvinyl chloride, polyethylene lactone, polylactide, and polyurethane for wound dressing applications. Furthermore, the review examines the blending of natural and synthetic polymers to create high-performance wound dressings. It also explores the incorporation of functional additives, such as antimicrobial agents, growth factors, and natural extracts, into electrospinning nanofibers to expedite wound healing and tissue repair. In conclusion, electrospinning is an emerging technology that provides unique opportunities for designing more effective wound dressings and care products.

Cite

CITATION STYLE

APA

Zhang, X., Wang, Y., Gao, Z., Mao, X., Cheng, J., Huang, L., & Tang, J. (2024, January 5). Advances in wound dressing based on electrospinning nanofibers. Journal of Applied Polymer Science. John Wiley and Sons Inc. https://doi.org/10.1002/app.54746

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free