The delimitation of bioregions helps to understand historical and ecological drivers of species distribution. In this work, we performed a network analysis of the spatial distribution patterns of plants in south of France (Languedoc-Roussillon and Provence-Alpes-Côte d'Azur) to analyze the biogeographical structure of the French Mediterranean flora at different scales. We used a network approach to identify and characterize biogeographical regions, based on a large database containing 2.5 million of geolocalized plant records corresponding to more than 3,500 plant species. This methodology is performed following five steps, from the biogeographical bipartite network construction to the identification of biogeographical regions under the form of spatial network communities, the analysis of their interactions, and the identification of clusters of plant species based on the species contribution to the biogeographical regions. First, we identified two sub-networks that distinguish Mediterranean and temperate biota. Then, we separated eight statistically significant bioregions that present a complex spatial structure. Some of them are spatially well delimited and match with particular geological entities. On the other hand, fuzzy transitions arise between adjacent bioregions that share a common geological setting, but are spread along a climatic gradient. The proposed network approach illustrates the biogeographical structure of the flora in southern France and provides precise insights into the relationships between bioregions. This approach sheds light on ecological drivers shaping the distribution of Mediterranean biota: The interplay between a climatic gradient and geological substrate shapes biodiversity patterns. Finally, this work exemplifies why fragmented distributions are common in the Mediterranean region, isolating groups of species that share a similar eco-evolutionary history.
CITATION STYLE
Lenormand, M., Papuga, G., Argagnon, O., Soubeyrand, M., De Barros, G., Alleaume, S., & Luque, S. (2019). Biogeographical network analysis of plant species distribution in the Mediterranean region. Ecology and Evolution, 9(1), 237–250. https://doi.org/10.1002/ece3.4718
Mendeley helps you to discover research relevant for your work.