Grain size dependence of dielectric relaxation in cerium oxide as high-K layer

23Citations
Citations of this article
30Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cerium oxide (CeO2) thin films used liquid injection atomic layer deposition (ALD) for deposition and ALD procedures were run at substrate temperatures of 150°C, 200°C, 250°C, 300°C, and 350°C, respectively. CeO2 were grown on n-Si(100) wafers. Variations in the grain sizes of the samples are governed by the deposition temperature and have been estimated using Scherrer analysis of the X-ray diffraction patterns. The changing grain size correlates with the changes seen in the Raman spectrum. Strong frequency dispersion is found in the capacitance-voltage measurement. Normalized dielectric constant measurement is quantitatively utilized to characterize the dielectric constant variation. The relationship extracted between grain size and dielectric relaxation for CeO2 suggests that tuning properties for improved frequency dispersion can be achieved by controlling the grain size, hence the strain at the nanoscale dimensions. © 2013 Zhao et al.

Cite

CITATION STYLE

APA

Zhao, C., Zhao, C. Z., Werner, M., Taylor, S., Chalker, P., & King, P. (2013). Grain size dependence of dielectric relaxation in cerium oxide as high-K layer. Nanoscale Research Letters, 8(1), 1–10. https://doi.org/10.1186/1556-276X-8-172

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free