Variability of leaf structure and presence of secondary metabolites in mature leaf tissue present a challenge for reliable DNA extraction from Osmanthus species and cultivars. The objective of this study was to develop a universal rapid, effective, and cost-efficient method of DNA isolation for Osmanthus mature leaf tissue. Four different methods were used to isolate DNA from 8 cultivars of Osmanthus. Absorbance spectra, DNA concentration, appearance on agarose gel, and performance in PCR were used to analyze quality, quantity, and integrity of isolated DNA. Methods were ranked in order, based on total quantity, quality, and performance points as the following: 1) solid-phase extraction (SPE), 2) modified alkaline lysis (SDS), 3) cetyltrimethylammonium bromide (CTAB) with chloroform (CHL), and 4) CTAB with phenol/chloroform (PHE). Total DNA, isolated via SPE, showed the least contamination but the lowest mean quantity (9.6 ± 3.4 μg) and highest cost. The highest quantity of DNA was isolated via SDS (117 ± 54.1 μg). SPE and SDS resolved the most individuals on agarose gel, whereas the 2 CTAB methods had poorly resolved gels. All methods except PHE performed well in PCR. Additions to the modified alkaline lysis method increased A260:A230 by up to 59% without affecting yield. With the use of SDS, an average of 1000 μg/g DNA was isolated from fresh leaf tissue of 18 samples in ~1.5 h at a cost of 0.74 U.S. dollars (USD)/sample. We recommend improved alkaline lysis as a rapid, effective, and cost-efficient method of isolating DNA from Osmanthus species.
CITATION STYLE
Alexander, L. (2016). Rapid, effective DNA isolation from osmanthus via modified alkaline lysis. Journal of Biomolecular Techniques, 27(2), 53–60. https://doi.org/10.7171/jbt.16-2702-001
Mendeley helps you to discover research relevant for your work.