Gefitinib Analogue V1801 Induces Apoptosis of T790M EGFR-Harboring Lung Cancer Cells by Up-Regulation of the BH-3 Only Protein Noxa

13Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

Treatment of non-small cell lung cancer (NSCLC) with drugs targeting the epidermal growth factor receptor (EGFR), e.g., gefitinib and erlotinib, will eventually fail because of the development of secondary mutations such as T790M in EGFR. Strategies to overcome this resistance are therefore an urgent need. In this study, we synthesized a dozen of novel gefitinib analogues and evaluated their effects on L858R/T790M-EGFR harboring NSCLC cells, and reported that one of these gefitinib mimetics, N-(2-bromo-5-(trifluoromethyl) phenyl)-6-methoxy-7-(3-(piperidin-1-yl)propoxy)quinazolin-4-amine (hereafter, V1801), triggered apoptosis of the NSCLC cells and overcame gefitinib-resistance in mice inoculated with NCI-H1975 cells. Though V1801 only moderately inhibited EGFR kinase activity, it markedly induced the expression of the BH3-only protein Noxa, and Noxa silencing significantly reduced V1801-induced apoptosis of NCI-H1975 cells. It is showed that V1801 interfered with the expression of the transcription factor c-Myc and the extracellular signal regulated kinase (Erk) pathway. V1801 in combination with proteasome inhibitor bortezomib exerted enhanced cytotoxicity in NCI-H1975 cells possibly due to potentiated induction of Noxa expression. These data indicate that gefinitib analogues with weak EGFR inhibitory activity may overcome drug-resistance via activation of BH-3 only pro-apoptotic proteins, and V1801 may have therapeutic potentials for NSCLC. © 2012 Zhang et al.

Cite

CITATION STYLE

APA

Zhang, B., Jiao, J., Liu, Y., Guo, L. X., Zhou, B., Li, G. Q., … Zhou, G. B. (2012). Gefitinib Analogue V1801 Induces Apoptosis of T790M EGFR-Harboring Lung Cancer Cells by Up-Regulation of the BH-3 Only Protein Noxa. PLoS ONE, 7(11). https://doi.org/10.1371/journal.pone.0048748

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free