Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment

41Citations
Citations of this article
74Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The interaction between the receptor, programmed cell death protein 1 (PD-1) and ligand, programmed cell death 1 (PD-L1) is known to inhibit CD8+ cytotoxic T lymphocyte proliferation, survival, and effector function. The result of this interaction leads to evasion of immune surveillance by tumors and subsequently cancer cell proliferation. Immunotherapy via PD-L1 blockade is used for a variety of malignancies, yet the prognostic value of immune checkpoint inhibition for the treatment of gastric cancer remains controversial. Thus, preclinical models that would predict the efficacy of such therapy in a subgroup of gastric cancer patients would be an advancement in the personalized treatment of this disease. Three-dimensional organoid cultures have not only been used to investigate the mechanisms regulating development and disease, but have also been used for high-throughput drug screening for targeted personalized therapy. Here we present the methodology for the co-culture of mouse-derived gastric cancer organoids with autologous immune cells specifically for the study of PD-L1/PD-1 interactions within the tumor microenvironment in vitro.

Cite

CITATION STYLE

APA

Chakrabarti, J., Holokai, L., Syu, L. J., Steele, N., Chang, J., Dlugosz, A., & Zavros, Y. (2018). Mouse-Derived Gastric Organoid and Immune Cell Co-culture for the Study of the Tumor Microenvironment. In Methods in Molecular Biology (Vol. 1817, pp. 157–168). Humana Press Inc. https://doi.org/10.1007/978-1-4939-8600-2_16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free