The whitefly (Bemisia tabaci), an important invasive pest that causes severe damage to crops worldwide, has developed resistance to a variety of insecticides. Carboxylesterases (COEs) are important multifunctional enzymes involved in the growth, development, and xenobiotic metabolism of insects. However, systematic studies on the COEs of B. tabaci are scarce. Here, 42 putative COEs in different functional categories were identified in the Mediterranean species of B. tabaci (B. tabaci MED) based on a genome database and neighbor-joining phylogeny. The expression patterns of the COEs were affected by the development of B. tabaci. The expression levels of six COEs were positively correlated with the concentration of imidacloprid to which B. tabaci adults were exposed. The mortality of B. tabaci MED adults fed dsBTbe5 (67.5%) and dsBTjhe2 (58.4%) was significantly higher than the adults fed dsEGFP (41.1%) when treated with imidacloprid. Our results provide a basis for functional research on COEs in B. tabaci and provide new insight into the imidacloprid resistance of B. tabaci.
CITATION STYLE
Xia, J., Xu, H., Yang, Z., Pan, H., Yang, X., Guo, Z., … Zhang, Y. (2019). Genome-wide analysis of carboxylesterases (COEs) in the whitefly, Bemisia tabaci (gennadius). International Journal of Molecular Sciences, 20(20). https://doi.org/10.3390/ijms20204973
Mendeley helps you to discover research relevant for your work.