In the case of severe accident with loss of containment in a nuclear plant, radionuclides are released into the atmosphere in the form of both gases and aerosol particles (Baklanov and Sørensen, 2001). The analysis of radioactive aerosol scavenged by rain after the Chernobyl accident highlights certain differences between the modelling studies and the environmental measurements. Part of these discrepancies can probably be attributed to uncertainties in the efficiencies used to calculate aerosol particle collection by raindrops, particularly drops with a diameter larger than one millimetre. In order to address the issue of these uncertainties, an experimental study was performed to close the gaps still existing for this key microphysical parameter. In this paper, attention is first focused on the efficiency with which aerosol particles in the accumulation mode are collected by raindrops with a diameter of 2 mm. The collection efficiencies measured for aerosol particle in the sub-micron range are quantitatively consistent with previous theoretical model developed by Beard (1974) and thus highlight the major role of rear capture in the submicron range. © Author(s) 2014.
CITATION STYLE
Quérel, A., Lemaitre, P., Monier, M., Porcheron, E., Flossmann, A. I., & Hervo, M. (2014). An experiment to measure raindrop collection efficiencies: Influence of rear capture. Atmospheric Measurement Techniques, 7(5), 1321–1330. https://doi.org/10.5194/amt-7-1321-2014
Mendeley helps you to discover research relevant for your work.