Characterization of a Herrmann-type high-resolution differential mobility analyzer

36Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Aerosol instrument characterization and verification for nanometer-sized particles requires well-established generation and classification instruments. A precise size selection of sub-3-nm charged aerosol particles requires a differential mobility analyzer (DMA), specially designed for the sub-3-nm size range. In this study, a Herrmann-type high-resolution DMA developed at Yale University was characterized in various operation conditions. A relation between sheath flow rate and tetraheptylammonium ion (C28H60N+, THA+, 1.47 nm, mobility equivalent diameter) was established. The maximum particle size that the DMA was able to classify was 2.9 nm with the highest sheath flow rate of 1427 liters per minute (Lpm), and 6.5 nm with the lowest stable sheath flow rate of 215 Lpm, restricted by the maximum and minimum flow rates provided by our blower. Resolution and transmission of DMA are reported for tetrapropylammonium (C12H28N+, TPA+, 1.16 nm), THA+, and THA2Br+ (1.78 nm) ions measured with two different central electrodes and five different sheath flow rates. The transmission varied between 0.01 and 0.22, and the resolution varied between 10.8 and 51.9, depending on the operation conditions.

Cite

CITATION STYLE

APA

Kangasluoma, J., Attoui, M., Korhonen, F., Ahonen, L., Siivola, E., & Petäjä, T. (2016). Characterization of a Herrmann-type high-resolution differential mobility analyzer. Aerosol Science and Technology, 50(3), 222–229. https://doi.org/10.1080/02786826.2016.1142065

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free