In the recent era, Metal Matrix Composites (MMCs) are one of the most vigorously studied topics in material science. Lightweight metals and its alloys create an intense attraction for tailoring new metal matrix composites to overcome conventional limitations like low strength. Aluminum metal matrix composites signify to the high-grade lightweight high-performance aluminum-based MMCs. The reinforcements in aluminum matrix composites could be in the form of particulates, whiskers, and continuous fiber or discontinuous fiber, where weight or volume fraction varies from a few percentages to 60%. Properties of aluminum metal matrix composites can be customized as per the demand of the industry by getting the appropriate combination of the metal matrix, reinforcements, and selective processing route. Nowadays many grads of aluminum matrix composites are fabricated by different routes where in situ route processing is more attractive compared with conventional ex-situ process because it delivers excellent wettability, thermally stability of reinforcements, the bonding strength between reinforcements and matrix, cohesive atomic structure, and fine grain size of reinforcements (specifically nano size). The devoted research work of aluminum matrix composites during the last three-decade generates a wealth of knowledge on the effect of reinforcements vis-à-vis mechanical, chemical, tribological properties of aluminum matrix composites. The acceptance of the aluminum matrix composites as engineering materials depends not only on the performance advantages of the composites, but it also depends upon the cheap, easy, and familiar fabrication technologies for these tailored materials.
CITATION STYLE
Rathod, N., & Menghani, J. (2019, October 18). A consequence of reinforcements in aluminum-based metal matrix composites: A literature review. Metallurgical and Materials Engineering. Association of Metallurgical Engineers of Serbia. https://doi.org/10.30544/422
Mendeley helps you to discover research relevant for your work.