RANSAC for Robotic Applications: A Survey

47Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

Abstract

Random Sample Consensus, most commonly abbreviated as RANSAC, is a robust estimation method for the parameters of a model contaminated by a sizable percentage of outliers. In its simplest form, the process starts with a sampling of the minimum data needed to perform an estimation, followed by an evaluation of its adequacy, and further repetitions of this process until some stopping criterion is met. Multiple variants have been proposed in which this workflow is modified, typically tweaking one or several of these steps for improvements in computing time or the quality of the estimation of the parameters. RANSAC is widely applied in the field of robotics, for example, for finding geometric shapes (planes, cylinders, spheres, etc.) in cloud points or for estimating the best transformation between different camera views. In this paper, we present a review of the current state of the art of RANSAC family methods with a special interest in applications in robotics.

Cite

CITATION STYLE

APA

Martínez-Otzeta, J. M., Rodríguez-Moreno, I., Mendialdua, I., & Sierra, B. (2023, January 1). RANSAC for Robotic Applications: A Survey. Sensors. MDPI. https://doi.org/10.3390/s23010327

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free