The number of road traffic accidents decreased in Lithuania from 2002 to 2017, while the ungulate–vehicle collision (UVC) number increased and accounted for approximately 69% of all wildlife–vehicle collisions (WVC) in the country. Understanding the relationship between UVCs, traffic intensity, and implemented mitigation measures is important for the assessment of UVC mitigation measure efficiency. We assessed the effect of annual average daily traffic (AADT) and wildlife fencing on UVCs using regression analysis of changes in annual UVCs and UVC hotspots on different categories of roads. At the highest rates, annual UVC numbers and UVC hotspots increased on lower category (national and regional) roads, forming a denser network. Lower rates of UVC increase occurred on higher category (main) roads, forming sparser road networks and characterized by the highest AADT. Before 2011, both UVC occurrence and fenced road sections were most common on higher-category roads. However, as of 2011, the majority of UVCs occurred on lower-category roads where AADT and fencing had no impact on UVCs. We conclude that wildlife fencing on roads characterized by higher speed and traffic intensity may decrease UVC numbers and at the same time shifting UVC occurrence towards roads characterized by lower speed and traffic intensity. Wildlife fencing re-allocates wildlife movement pathways toward roads with insufficient or no mitigation measures.
CITATION STYLE
Kučas, A., & Balčiauskas, L. (2021). Impact of road fencing on ungulate–vehicle collisions and hotspot patterns. Land, 10(4). https://doi.org/10.3390/land10040338
Mendeley helps you to discover research relevant for your work.