Background:Cardiac fibrogenesis in the late stage of viral myocarditis causing contractile dysfunction and ventricular dilatation, is a major pathogenic factor for the progression of myocarditis to serious cardiovascular diseases including dilated cardiomyopathy (DCM) and congestive heart failure (HF). Recent studies indicate that regulatory T cells (Tregs) are involved in the fibrotic process of liver and lung fibosis. However, the role of Tregs in the development of viral myocarditis-caused cardiac fibrosis and their therapeutic potential remains unclear.Methodology/Principal Findings:Myocardial fibrosis was induced in BALB/c mice by intraperitoneal injection of Coxsackievirus B3 (CVB3) assessed by picrosirius red staining and detection of expression levels of collagen I, matrix metalloproteinase-1 (MMP-1), matrix metalloproteinase-3 (MMP-3) and tissue inhibitor of metalloproteinase-1 (TIMP-1). Myocardial Treg frequency was down-regulated during the course of viral myocarditis and a negative correlation with the severity of cardiac fibrosis was found. To explore the role of Tregs in CVB-induced cardiac fibrosis, Treg was in vivo depleted by injecting anti-CD25 mAb which resulted in aggravation of cardiac fibrosis. In consistent with that, after adoptive transfer of isolated Tregs into mice, significant amelioration of CVB3-induced cardiac fibrosis was confirmed. Interleukin-10 (IL-10) neutralizing antibodies were used in vivo and in vitro to explore the molecular mechanism of the therapeutic effect of Treg. It was found that administration of anti-IL-10 mAb after Treg transfer abrogated Treg's treating effect and the inhibition of Treg on collagen production by cardiac fibroblasts was mediated mainly through IL-10.Conclusion/Significance:Our data suggested that Tregs have a protective role in the fibrotic process of CVB3-induced cardiac fibrosis via secreting IL-10 and might provide an alternative option for the future treatment of cardiac fibrosis. © 2013 Cao et al.
CITATION STYLE
Cao, Y., Xu, W., & Xiong, S. (2013). Adoptive Transfer of Regulatory T Cells Protects against Coxsackievirus B3-Induced Cardiac Fibrosis. PLoS ONE, 8(9). https://doi.org/10.1371/journal.pone.0074955
Mendeley helps you to discover research relevant for your work.