Electric agglomeration is the process in which particles are charged in electric fields and coagulate, which is enhanced by electric force or turbulence. The collection efficiency of submicron particles is improved, which can be a solution to submicron particle abatement in traditional electrostatic precipitators (ESPs), by using a pre-charger to increase median particle diameter and realizing particle pre-charging. In this study, a laboratory bipolar pre-charger with a perforated plate between discharging regions was designed to examine ionic-wind-assisted charge-induced agglomeration, and an ESP was arranged afterwards to collect the fine particles. Experiments were conducted to investigate submicron particle charging, agglomeration characteristics, and collection efficiency. Results indicated that a pre-charger with proper discharging voltage match and plate porosity can optimize particle agglomeration and improve collection efficiency by about 12% compared with the results obtained without a pre-charger. An optimal solution was achieved and a collecting efficiency of 96%–98% was obtained for all sizes by utilizing the turbulence caused by ionic wind and optimizing the experimental operation conditions.
CITATION STYLE
Chang, Q., Zheng, C., Gao, X., Chiang, P., Fang, M., Luo, Z., & Cen, K. (2015). Systematic approach to optimization of submicron particle agglomeration using ionic-wind-assisted pre-charger. Aerosol and Air Quality Research, 15(7), 2709–2719. https://doi.org/10.4209/aaqr.2015.06.0418
Mendeley helps you to discover research relevant for your work.