Activation of NADPH oxidases leads to DNA damage in esophageal cells

23Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Gastroesophageal reflux disease (GERD) is the strongest known risk factor for esophageal adenocarcinoma. In the center of tumorigenic events caused by GERD is repeated damage of esophageal tissues by the refluxate. In this study, we focused on a genotoxic aspect of exposure of esophageal cells to acidic bile reflux (BA/A). Analyzing cells generated from patients with Barrett's esophagus and human esophageal specimens, we found that BA/A cause significant DNA damage that is mediated by reactive-oxygen species. ROS originate from mitochondria and NADPH oxidases. We specifically identified NOX1 and NOX2 enzymes to be responsible for ROS generation. Inhibition of NOX2 and NOX1 with siRNA or chemical inhibitors significantly suppresses ROS production and DNA damage induced by BA/A. Mechanistically, our data showed that exposure of esophageal cells to acidic bile salts induces phosphorylation of the p47phox subunit of NOX2 and its translocation to the cellular membrane. This process is mediated by protein kinase C, which is activated by BA/A. Taken together, our studies suggest that inhibition of ROS induced by reflux can be a useful strategy for preventing DNA damage and decreasing the risk of tumorigenic transformation caused by GERD.

Cite

CITATION STYLE

APA

Bhardwaj, V., Gokulan, R. C., Horvat, A., Yermalitskaya, L., Korolkova, O., Washington, K. M., … Zaika, A. I. (2017). Activation of NADPH oxidases leads to DNA damage in esophageal cells. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-09620-4

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free