The Kohonen Self-Organizing Map (KSOM) is one of the Neural Network unsupervised learning algorithms. This algorithm is used in solving problems in various areas, especially in clustering complex data sets. Despite its advantages, the KSOM algorithm has a few drawbacks; such as overlapped cluster and non-linear separable problems. Therefore, this paper proposes a modified KSOM that inspired from pheromone approach in Ant Colony Optimization. The modification is focusing on the distance calculation amongst objects. The proposed algorithm has been tested on four real categorical data that are obtained from UCI machine learning repository; Iris, Seeds, Glass and Wisconsin Breast Cancer Database. From the results, it shows that the modified KSOM has produced accurate clustering result and all clusters can clearly be identified.
CITATION STYLE
Ahmad, A., & Yusof, R. (2016). A modified kohonen self-organizing map (KSOM) clustering for four categorical data. Jurnal Teknologi, 78(6–13), 75–80. https://doi.org/10.11113/jt.v78.9275
Mendeley helps you to discover research relevant for your work.