T cell activation requires that the cell meet increased energetic and biosynthetic demands. We showed that exogenous nutrient availability regulated the differentiation of naïve CD4+ T cells into distinct subsets. Activation of naïve CD4+ T cells under conditions of glutamine deprivation resulted in their differentiation into Foxp3+ (forkhead box P3-positive) regulatory T (Treg) cells, which had suppressor function in vivo. Moreover, glutamine-deprived CD4+ T cells that were activated in the presence of cytokines that normally induce the generation of T helper 1 (TH1) cells instead differentiated into Foxp3+ Treg cells. We found that α-ketoglutarate (αKG), the glutamine-derived metabolite that enters into the mitochondrial citric acid cycle, acted as a metabolic regulator of CD4+ T cell differentiation. Activation of glutaminedeprived naïve CD4+ T cells in the presence of a cell-permeable αKG analog increased the expression of the gene encoding the TH1 cell-associated transcription factor Tbet and resulted in their differentiation into TH1 cells, concomitant with stimulation of mammalian target of rapamycin complex 1 (mTORC1) signaling. Together, these data suggest that a decrease in the intracellular amount of αKG, caused by the limited availability of extracellular glutamine, shifts the balance between the generation of TH1 and Treg cells toward that of a Treg phenotype.
CITATION STYLE
Klysz, D., Tai, X., Robert, P. A., Craveiro, M., Cretenet, G., Oburoglu, L., … Taylor, N. (2015). Glutamine-dependent α-ketoglutarate production regulates the balance between T helper 1 cell and regulatory T cell generation. Science Signaling, 8(396). https://doi.org/10.1126/scisignal.aab2610
Mendeley helps you to discover research relevant for your work.