Diphosphinoboranes as Intramolecular Frustrated Lewis Pairs: P-B-P Bond Systems for the Activation of Dihydrogen, Carbon Dioxide, and Phenyl Isocyanate

13Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Herein, we present the first example of the activation of small molecules by P-B-P bond systems. The reactivity study involves reactions of two selected diphosphinoboranes, (t-Bu2P)2BPh (1′) and (Cy2P)2BNiPr2 (2), that differ in terms of their structural and electronic properties for the activation of dihydrogen, carbon dioxide, and phenyl isocyanate. Diphosphinoborane 1′ activates H2 under very mild conditions in the absence of a catalyst with the formation of the dimer (t-Bu2PB(Ph)H)2 and t-Bu2PH. Conversely, diphosphinoborane 2 did not react with H2 under the same conditions. The reaction of 1′ with CO2 led to the formation of a compound with an unusual structure, where two phosphinoformate units were coordinated to the PhBOBPh moiety. In addition, 2 reacted with CO2 to insert two CO2 molecules into the P-B bonds of the parent diphosphinoborane. Both diphosphinoboranes activated PhNCO, yielding products resulting from the addition of two and/or three PhNCO molecules and the formation of new P-C, B-O, B-N, and C-N bonds. The products of the activation of small molecules by diphosphinoboranes were characterized with nuclear magnetic resonance (NMR) and infrared (IR) spectroscopy, single-crystal X-ray diffraction, and elemental analysis. Additionally, the reaction mechanisms of the activation of small molecules by diphosphinoboranes were elucidated by theoretical methods.

Cite

CITATION STYLE

APA

Szynkiewicz, N., Ordyszewska, A., Chojnacki, J., & Grubba, R. (2021). Diphosphinoboranes as Intramolecular Frustrated Lewis Pairs: P-B-P Bond Systems for the Activation of Dihydrogen, Carbon Dioxide, and Phenyl Isocyanate. Inorganic Chemistry, 60(6), 3794–3806. https://doi.org/10.1021/acs.inorgchem.0c03563

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free