The Chinese BeiDou Navigation Satellite System has shown potential for precise positioning with a comparable accuracy to that of the Global Positioning System (GPS) at the centimeter level for the horizontal component and the sub-centimeter level for the vertical component. However, a longer convergence time limits the performance of BeiDou precise point positioning (PPP) compared to the GPS PPP solutions. In this study, we applied the tropospheric delay information, derived from the European Centre of Medium-Range Weather Forecasts (ECMWF) analysis and prediction data, into the simulated real-time BeiDou-only and BeiDou/GPS PPP to augment the solutions. Observations from stations in Southeast Asia, which are capable of tracking the BeiDou constellation from the International GNSS Service (IGS) Multi-GNSS Experiment and Pilot Project (MGEX) network, are processed with different strategies: the standard PPP and the introduced ECMWF-augmented PPP with analysis and prediction data, respectively. The positioning results demonstrate that the ECMWF-augmented BeiDou-only and BeiDou/GPS PPP methods using prediction data perform as well as those using analysis data. In the case of BeiDou-only PPP scenarios, remarkable advancements of 80.6% for the convergence time are achieved by two ECMWF-augmented PPP solutions with respect to the standard PPP method. For the positioning accuracy, the two proposed augmented PPP methods attain 6.6 cm in three-dimensional (3D) accuracy when the standard PPP solution get converged (10 cm), representing a remarkable improvement of 34%. As for the north/east/up component, improvements of 14.7 and 8% for positioning accuracy are obtained for the north and east components, respectively, while a remarkable improvement of 37.3% is achieved for the vertical component. In terms of the BeiDou/GPS PPP solutions, the ECMWF-augmented PPP scenarios attain over 10% improvements in 3D accuracy in all processing session lengths. These improvements totally come from the vertical component, whereas almost no enhancements are obtained in two horizontal components.[Figure not available: see fulltext.].
CITATION STYLE
Zhu, K., Zhao, L., Wang, W., Zhang, S., Liu, R., & Wang, J. (2018). Augment BeiDou real-time precise point positioning using ECMWF data. Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0870-0
Mendeley helps you to discover research relevant for your work.