Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain

122Citations
Citations of this article
252Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Visual changes in feature movies, like in real-live, can be partitioned into global flow due to self/camera motion, local/differential flow due to object motion, and residuals, for example, due to illumination changes. We correlated these measures with brain responses of human volunteers viewing movies in an fMRI scanner. Early visual areas responded only to residual changes, thus lacking responses to equally large motion-induced changes, consistent with predictive coding. Motion activated V5+ (MT+), V3A, medial posterior parietal cortex (mPPC) and, weakly, lateral occipital cortex (LOC). V5+ responded to local/differential motion and depended on visual contrast, whereas mPPC responded to global flow spanning the whole visual field and was contrast independent. mPPC thus codes for flow compatible with unbiased heading estimation in natural scenes and for the comparison of visual flow with nonretinal, multimodal motion cues in it or downstream. mPPC was functionally connected to anterior portions of V5+, whereas laterally neighboring putative homologue of lateral intraparietal area (LIP) connected with frontal eye fields. Our results demonstrate a progression of selectivity from local and contrast-dependent motion processing in V5+ toward global and contrast-independent motion processing in mPPC. The function, connectivity, and anatomical neighborhood of mPPC imply several parallels to monkey ventral intraparietal area (VIP). © 2007 The Authors.

Cite

CITATION STYLE

APA

Bartels, A., Zeki, S., & Logothetis, N. K. (2008). Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cerebral Cortex, 18(3), 705–717. https://doi.org/10.1093/cercor/bhm107

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free