Brain tumor classification using convolutional neural network

347Citations
Citations of this article
165Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Misdiagnosis of brain tumor types will prevent effective response to medical intervention and decrease the chance of survival among patients. One conventional method to differentiate brain tumors is by inspecting the MRI images of the patient’s brain. For large amount of data and different specific types of brain tumors, this method is time consuming and prone to human errors. In this study, we attempted to train a Convolutional Neural Network (CNN) to recognize the three most common types of brain tumors, i.e. the Glioma, Meningioma, and Pituitary. We implemented the simplest possible architecture of CNN; i.e. one each of convolution, max-pooling, and flattening layers, followed by a full connection from one hidden layer. The CNN was trained on a brain tumor dataset consisting of 3064 T-1 weighted CE-MRI images publicly available via figshare Cheng (Brain Tumor Dataset, 2017 [1]). Using our simple architecture and without any prior region-based segmentation, we could achieve a training accuracy of 98.51% and validation accuracy of 84.19% at best. These figures are comparable to the performance of more complicated region-based segmentation algorithms, which accuracies ranged between 71.39 and 94.68% on identical dataset Cheng (Brain Tumor Dataset, 2017 [1], Cheng et al. (PLoS One 11, 2017 [2]).

Cite

CITATION STYLE

APA

Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., & Mengko, T. R. (2019). Brain tumor classification using convolutional neural network. In IFMBE Proceedings (Vol. 68, pp. 183–189). Springer Verlag. https://doi.org/10.1007/978-981-10-9035-6_33

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free