Modeling Based Identifiability and Parametric Estimation of an Enzymatic Hydrolysis Process of Amylaceous Materials

0Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This work presents the modeling of an enzymatic hydrolysis process of amylaceous materials considering the parameter identification problem as a basis for the construction of the model. For this, a modeling methodology is modified in order to apply the identifiability property and improve the proposed model structure. A brief theoretical explanation of the identifiability is described. This concept is based on the observability property of a nonlinear dynamic system. The used methodology is based on the phenomenological based semiphysical model (PBSM). This methodology visualizes that the structure of a dynamic model can only improve with new mass or energy balances suggested by model suppositions. Additionally, a computer algorithm is included in the methodology to validate if the model is structurally locally identifiable or know if the parameters are unidentifiable. Also, an optimization algorithm is used to obtain the numeric values of the identifiable parameters and, hence, guarantee the validity of the result. The methodology focuses on the liquefaction and saccharification stages of an enzymatic hydrolysis process. The results of the model are compared with experimental data. The comparison shows low errors of 7.96% for liquefaction and 7.35% for saccharification. These errors show a significant improvement in comparison with previous models and validate the proposed modeling methodology.

Cite

CITATION STYLE

APA

Padierna-Vanegas, D., Acosta-Pavas, J. C., Granados-García, L. M., & Botero-Castro, H. A. (2022). Modeling Based Identifiability and Parametric Estimation of an Enzymatic Hydrolysis Process of Amylaceous Materials. ACS Omega, 7(17), 14544–14555. https://doi.org/10.1021/acsomega.1c06193

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free