Magnetic poly(p-phenylenediamine) (PpPD) nanocomposite was synthesized via mixing p-phenylenediamine solution and Fe3O4 nanoparticles and used as a carrier for immobilized enzymes. Successful synthesis of PpPD/Fe3O4 nanofiber was confirmed by transmission electron microscopy and Fourier transform infrared spectroscopy. Laccase (Lac) was immobilized on the surface of PpPD/Fe3O4 nanofiber through covalent bonding for reactive blue 19 dye removal. The immobilized Lac-nanofiber conjugates could be recovered from the reaction solution using a magnet. The optimum reaction pH and temperature for the immobilized Lac were 3.5 and 65 °C, respectively. The storage, operational stability, and thermal stability of the immobilized Lac were higher than those of its free counterpart. The dye removal efficiency of immobilized Lac was about 80% in the first 1 h of incubation, while that of free Lac was about 20%. It was found that the unique electronic properties of PpPD might underlie the high dye removal efficiency of immobilized Lac. Over a period of repeated operation, the dye removal efficiency was above 90% during the first two cycles and remained at about 43% after eight cycles. Immobilized Lac on PpPD/Fe3O4 nanofiber showed high stability, easy recovery, reuse capabilities, and a high removal efficiency for reactive blue 19 dye; therefore, it provides an optional tool for dye removal from wastewater.
CITATION STYLE
Liu, Y., Yan, M., Geng, Y., & Huang, J. (2016). Laccase immobilization on poly(p-phenylenediamine)/Fe3O4 nanocomposite for reactive blue 19 dye removal. Applied Sciences (Switzerland), 6(8). https://doi.org/10.3390/app6080232
Mendeley helps you to discover research relevant for your work.