Bimolecular Cross-Metathesis of a Tetrasubstituted Alkene with Allylic Sulfones

N/ACitations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Exquisite control of catalytic metathesis reactivity is possible through ligand-based variation of ruthenium carbene complexes. Sterically hindered alkenes, however, remain a generally recalcitrant class of substrates for intermolecular cross-metathesis. Allylic chalcogenides (sulfides and selenides) have emerged as “privileged” substrates that exhibit enhanced turnover rates with the commercially available second-generation ruthenium catalyst. Increased turnover rates are advantageous when competing catalyst degradation is limiting, although specific mechanisms have not been defined. Herein, we describe facile cross-metathesis of allylic sulfone reagents with sterically hindered isoprenoid alkene substrates. Furthermore, we demonstrate the first example of intermolecular cross-metathesis of ruthenium carbenes with a tetrasubstituted alkene. Computational analysis by combined coupled cluster/DFT calculations exposes a favorable energetic profile for metallacyclobutane formation from chelating ruthenium β-chalcogenide carbene intermediates. These results establish allylic sulfones as privileged reagents for a substrate-based strategy of cross-metathesis derivatization.

Cite

CITATION STYLE

APA

Sapkota, R. R., Jarvis, J. M., Schaub, T. M., Talipov, M. R., & Arterburn, J. B. (2019). Bimolecular Cross-Metathesis of a Tetrasubstituted Alkene with Allylic Sulfones. ChemistryOpen, 8(2), 201–205. https://doi.org/10.1002/open.201800296

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free