Precooling a building overnight during the summer is a low cost practice that may provide significant help in decreasing energy demand and shaving peak loads in buildings. The effectiveness of precooling depends on the weather patterns at the location, however research in this field is predominantly focused in the building thermal response alone. This paper proposes an analytical tool for assessing the precooling potential through simulations from real data in a numerical weather prediction platform. Three dimensionless ratios are developed based on the meteorological analysis and the concept of degree hours that provide an understanding of the precooling potential, utilization and theoretical value. Simulations were carried out for five sites within the Sydney (Australia) metro area and it was found that they have different responses to precooling, depending on their proximity to the ocean, vegetation coverage, and urban density. These effects cannot be detected when typical meteorological year data or data from weather stations at a distance from the building were used. Results from simulations in other Australian capitals suggest that buildings in continental and temperate climates have the potential to cover substantial parts of the cooling loads with precooling, assuming appropriate infrastructure is in place.
CITATION STYLE
Lazos, D., Kay, M., & Sproul, A. (2017). Development of a numericalweather analysis tool for assessing the precooling potential at any location. Energies, 10(1). https://doi.org/10.3390/en10010021
Mendeley helps you to discover research relevant for your work.