The estimation of a log-concave density on R is a canonical problem in the area of shape-constrained nonparametric inference.We present a Bayesian nonparametric approach to this problem based on an exponentiated Dirichlet process mixture prior and show that the posterior distribution converges to the log-concave truth at the (near-) minimax rate in Hellinger distance. Our proof proceeds by establishing a general contraction result based on the log-concave maximum likelihood estimator that prevents the need for further metric entropy calculations. We further present computationally more feasible approximations and both an empirical and hierarchical Bayes approach. All priors are illustrated numerically via simulations.
CITATION STYLE
Mariucci, E., Ray, K., & Szabó, B. (2020). A Bayesian nonparametric approach to log-concave density estimation. Bernoulli, 26(2), 1070–1097. https://doi.org/10.3150/19-BEJ1139
Mendeley helps you to discover research relevant for your work.