Multiphoton upconversion is a process where two or more photons are absorbed simultaneously to excite an electron to an excited state and, subsequently, the relaxation of electron gives rise to the emission of a photon with frequency greater than those of the absorbed photons. Materials possessing such property attracted attention due to applications in biological imaging, photodynamic therapy, three-dimensional optical data storage, frequency-upconverted lasing and optical power limiting. Here we report four-photon upconversion in metal-organic frameworks containing the ligand, trans, trans-9,10-bis(4-pyridylethenyl)anthracene. The ligand has a symmetrical acceptor-Ï €-donor-Ï €-acceptor structure and a singlet biradical electronic ground state, which boosted its multiphoton absorption cross-sections. We demonstrate that the upconversion efficiency can be enhanced by Förster resonance energy transfer within host-guest metal-organic frameworks consisting of encapsulated high quantum yielding guest molecules. Using these strategies, metal-organic framework materials, which can exhibit frequency-upconverted photoluminescence excited by simultaneous multiphoton absorption, can be rationally designed and synthesized.
CITATION STYLE
Quah, H. S., Chen, W., Schreyer, M. K., Yang, H., Wong, M. W., Ji, W., & Vittal, J. J. (2015). Multiphoton harvesting metal-organic frameworks. Nature Communications, 6. https://doi.org/10.1038/ncomms8954
Mendeley helps you to discover research relevant for your work.