Getting Out of the Way: Collision-Avoiding Pedestrian Models Compared to the RealWorld

  • Lämmel G
  • Plaue M
N/ACitations
Citations of this article
24Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Numerical simulation of human crowds is a challenging task and a number of models to simulate pedestrian dynamics on a microscopic level have been established. One aim of those models is to reproduce a realistic, and in particular collision-free, movement of crowds in complex environments. This work investigates three approaches on their capability to reproduce a collision-free movement of pedestrian crowds in complex dynamic environments. The baseline model is the well-known social force model. While in the social force model pedestrians do not explicitly avoid each other, the second model extends the social forcemodel to avoid collisions explicitly. The observed collision-avoiding behavior produced by the third model is reached by calculating velocity obstacles. These are obstacles in the velocity space, meaning that if a pedestrian chooses a velocity that lies inside the velocity obstacle, then a collision occur at some time. This work discusses the models and their integration in a multi-agent simulation framework. Themodels are tested on data from a real-world experiment conducted atTechnische UniversitätBerlin. In this experiment, two pedestrian flows intersected at an angle of 90ı. The models’ performancewith regard to the reproduction of a realistic crowds movement and their computational complexity are discussed in this work.

Cite

CITATION STYLE

APA

Lämmel, G., & Plaue, M. (2014). Getting Out of the Way: Collision-Avoiding Pedestrian Models Compared to the RealWorld. In Pedestrian and Evacuation Dynamics 2012 (pp. 1275–1289). Springer International Publishing. https://doi.org/10.1007/978-3-319-02447-9_105

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free