Boron displays many unusual structural and bonding properties due to its electron deficiency. Here we show that a boron atom in a boron monoxide cluster (B9O-) exhibits transition-metal-like properties. Temperature-dependent photoelectron spectroscopy provided evidence of the existence of two isomers for B9O-: the main isomer has an adiabatic detachment energy (ADE) of 4.19 eV and a higher energy isomer with an ADE of 3.59 eV. The global minimum of B9O- is found surprisingly to be an umbrella-like structure (C6v, 1A1) and its simulated spectrum agrees well with that of the main isomer observed. A low-lying isomer (Cs, 1A′) consisting of a BO unit bonded to a disk-like B8 cluster agrees well with the 3.59 eV ADE species. The unexpected umbrella-like global minimum of B9O- can be viewed as a central boron atom coordinated by a η7-B7 ligand on one side and a BO ligand on the other side, [(η7-B7)-B-BO]-. The central B atom is found to share its valence electrons with the B7 unit to fulfill double aromaticity, similar to that in half-sandwich [(η7-B7)-Zn-CO]- or [(η7-B7)-Fe(CO)3]- transition-metal complexes. The ability of boron to form a half-sandwich complex with an aromatic ligand, a prototypical property of transition metals, brings out new metallomimetic properties of boron.
Mendeley helps you to discover research relevant for your work.
CITATION STYLE
Tian, W. J., Chen, W. J., Yan, M., Li, R., Wei, Z. H., Chen, T. T., … Wang, L. S. (2021). Transition-metal-like bonding behaviors of a boron atom in a boron-cluster boronyl complex [(η7-B7)-B-BO]-. Chemical Science, 12(23), 8157–8164. https://doi.org/10.1039/d1sc00534k