Background: The LH surge is a pivotal event that triggers multiple key ovarian processes including oocyte maturation, cumulus expansion, follicular wall rupture and luteinization of mural granulosa and theca cells. Recently, LH-dependent activation of the Hippo signaling pathway has been shown to be required for the differentiation of granulosa cells into luteal cells. Still, the precise interactions between Hippo and LH signaling in murine granulosa cells remain to be elucidated. Methods: To detect the expression of effectors of the Hippo pathway, western blot, immunohistochemical and RT-qPCR analyses were performed on granulosa cells treated with LH in vitro or isolated from immature mice treated with eCG and hCG. Cultured granulosa cells were pretreated with pharmacologic inhibitors to identify the signaling pathways involved in Hippo regulation by LH. To study the roles of Yap1 and Taz in the regulation of the LH signaling cascade, RT-qPCR and microarray analyses were done on granulosa cells from Yap1f/f;Tazf/f mice treated with an adenovirus to drive cre expression. RT-qPCR was performed to evaluate YAP1 binding to the Areg promoter following chromatin immunoprecipitation of granulosa cells collected from mice prior to or 60 min following hCG treatment. Results: Granulosa cells showed a transient increase in LATS1, YAP1 and TAZ phosphorylation levels in response to the ovulatory signal. This Hippo activation by LH was mediated by protein kinase A. Furthermore, Yap1 and Taz are required for the induction of several LH target genes such as Areg, Pgr and Ptgs2, and for the activation of the ERK1/2 pathway. Consistent with these results, there was a substantial overlap between genes that are upregulated by LH and those that are downregulated following loss of Yap1/Taz, highlighting a major role for Hippo in mediating LH actions in the ovulation process. Finally, we showed that there is a marked recruitment of YAP1 to the Areg promoter of granulosa cells in response to hCG stimulation. Conclusions: Overall, these results indicate that Hippo collaborates with the cAMP/PKA and ERK1/2 pathways to participate in the precise regulation of the LH cascade, and that Areg, as a direct transcriptional target of YAP1, is involved in mediating its actions in the ovary. [MediaObject not available: see fulltext.].
CITATION STYLE
Godin, P., Tsoi, M. F., Morin, M., Gévry, N., & Boerboom, D. (2022). The granulosa cell response to luteinizing hormone is partly mediated by YAP1-dependent induction of amphiregulin. Cell Communication and Signaling, 20(1). https://doi.org/10.1186/s12964-022-00843-1
Mendeley helps you to discover research relevant for your work.