Bone morphogenetic protein (BMP)-1 is a glycosylated metalloproteinase that is fundamental to the synthesis of a normal extracellular matrix because it cleaves type I procollagen, as well as other precursor proteins. Sequence analysis suggests that BMP-1 has six potential N-linked glycosylation sites (i.e. NXS/T) namely: Asn91 (prodomain), Asn142 (metalloproteinase domain), Asn332 and Asn363 (CUB1 domain), Asn599 (CUB3 domain), and Asn726 in the C-terminal-specific domain. In this study we showed that all these sites are N-glycosylated with complex-type oligosaccharides containing sialic acid, except Asn726 presumably because proline occurs immediately C-terminal of threonine in the consensus sequence. Recombinant BMP-1 molecules lacking all glycosylation sites or the three CUB-specific sites were not secreted. BMP-1 lacking CUB glycosylation was translocated to the proteasome for degradation. BMP-1 molecules lacking individual glycosylation sites were efficiently secreted and exhibited full procollagen C-proteinase activity, but N332Q and N599Q exhibited a slower rate of cleavage. BMP-1 molecules lacking any one of the CUB-specific glycosylation sites were sensitive to thermal denaturation. The study showed that the glycosylation sites in the CUB domains of BMP-1 are important for secretion and stability of the molecule.
CITATION STYLE
Garrigue-Antar, L., Hartigan, N., & Kadler, K. E. (2002). Post-translational modification of bone morphogenetic protein-1 is required for secretion and stability of the protein. Journal of Biological Chemistry, 277(45), 43327–43334. https://doi.org/10.1074/jbc.M207342200
Mendeley helps you to discover research relevant for your work.