Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling

125Citations
Citations of this article
161Readers
Mendeley users who have this article in their library.

Abstract

Chondroitin sulfate proteoglycans (CSPGs) are upregulated after CNS lesions, where they inhibit axon regeneration. In order for axon growth and regeneration to occur, surface integrin receptors must interact with surrounding extracellular matrix molecules. We have explored the hypothesis that CSPGs inhibit regeneration by inactivating integrins and that forcing integrins into an active state might overcome this inhibition. Using cultured rat sensory neurons, we show that the CSPG aggrecan inhibits laminin-mediated axon growth by impairing integrin signaling via decreasing phosphorylated FAK (pFAK) and pSrc levels, without affecting surface integrin levels. Forcing integrin activation and signaling by manganese or an activating antibody TS2/16 reversed the inhibitory effect of aggrecan on mixed aggrecan/ laminin surfaces, and enhanced axon growth from cultured rat sensory neurons (manganese) and human embryonic stem cell-derived mo-toneurons (TS2/16). The inhibitory effect of Nogo-A can also be reversed by integrin activation. These results suggest that inhibition by CSPGs can act via inactivation of integrins, and that activation of integrins is a potential method for improving axon regeneration after injury ©2011 the authors.

Cite

CITATION STYLE

APA

Tan, C. L., Kwok, J. C. F., Patani, R., Ffrench-Constant, C., Chandran, S., & Fawcett, J. W. (2011). Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. Journal of Neuroscience, 31(17), 6289–6295. https://doi.org/10.1523/JNEUROSCI.0008-11.2011

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free