Evolutionary transitions in individuality (ETIs) occur when formerly autonomous organisms evolve to become parts of a new, ‘higher-level’ organism. One of the first major hurdles that must be overcome during an ETI is the emergence of Darwinian evolvability in the higher-level entity (e.g. a multicellular group), and the loss of Darwinian autonomy in the lower-level units (e.g. individual cells). Here, we examine how simple higher-level life cycles are a key innovation during an ETI, allowing this transfer of fitness to occur ‘for free’. Specifically, we show how novel life cycles can arise and lead to the origin of higher-level individuals by (i) mitigating conflicts between levels of selection, (ii) engendering the expression of heritable higher-level traits and (iii) allowing selection to efficiently act on these emergent higher-level traits. Further, we compute how canonical early life cycles vary in their ability to fix beneficial mutations via mathematical modelling. Life cycles that lack a persistent lower-level stage and develop clonally are far more likely to fix ‘ratcheting’ mutations that limit evolutionary reversion to the pre-ETI state. By stabilizing the fragile first steps of an evolutionary transition in individuality, nascent higher-level life cycles may play a crucial role in the origin of complex life. This article is part of the themed issue ‘Process and pattern in innovations from cells to societies’.
CITATION STYLE
Ratcliff, W. C., Herron, M., Conlin, P. L., & Libby, E. (2017). Nascent life cycles and the emergence of higher-level individuality. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1735). https://doi.org/10.1098/rstb.2016.0420
Mendeley helps you to discover research relevant for your work.