Poly(ADP-ribose)polymerases (PARP-1 and -2) are activated by DNA strand breaks to synthesize protein-bound ADP-ribose polymers from NAD+. The two enzymes are overexpressed in rat spermatocytes and are likely to play a role in meiosis. Indeed parp -2-/- mice, but not parp -1 knockouts, show hypofertility. Aside, PARP-1 and PARP-2 are both involved in DNA damage repair and signalling, but their relative contributions to such processes remain as yet unknown, largely because of the lack of PARP isoform-specific inhibitors that has precluded in vivo studies. Here, we used permeabilized rat primary spermatocytes or isolated spermatocyte nuclei and radiolabelled NAD+ to investigate potential isoform-specific effects on basic features of the poly(ADP-ribosyl)ation reaction, including size of ADP-ribose polymers at different NAD+ concentrations, extent of auto- versus etheromodification, and modulation of such reactions by the PARP inhibitor, PJ34. We found that PARP-1 automodification prevailed over PARP-2 modification. In addition, over 50% of cellular poly(ADP-ribose) was covalently bound to histones H1 and H2. The inhibitory effect of PJ34 appeared to be targeted mainly to the elongation step of the reaction. We propose that a different propensity of PARP-1 and PARP-2 to undergo automodification and/or catalyze etheromodification, both in terms of number of enzyme molecules being involved and amount of bound poly(ADP-ribose), may underlie distinct roles in the regulation of spermatocyte functions. © The Author 2007. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.
CITATION STYLE
Tramontano, F., Malanga, M., & Quesada, P. (2007). Differential contribution of poly(ADP-ribose)polymerase-1 and -2 (PARP-1 and -2) to the poly(ADP-ribosyl)ation reaction in rat primary spermatocytes. Molecular Human Reproduction, 13(11), 821–828. https://doi.org/10.1093/molehr/gam062
Mendeley helps you to discover research relevant for your work.